# Universität Bielefeld

# Pythia: Compositional meaning construction for question answering

Christina Unger, Philipp Cimiano Semantic Computing Group · CITEC · Universität Bielefeld

## ARCHITECTURE

**Pythia** is an ontology-based question answering system that translates natural language questions into formal queries, relying on:

- a compositional construction of general meaning representations
  - captures the semantic structure of the input question
  - covers also complex constructions, such as quantification, comparatives and superlatives, negation, etc.
- a domain-specific grammar generated from an ontology lexicon
  - resulting semantic representations are aligned to a specific ontology, thereby ensuring a precise and correct mapping of natural language terms to corresponding ontology concepts



### ONLINE PROCESSING STEPS

#### Parsing and interpretation

**Pythia** incorporates an Early-style parser for LTAG and a parallel meaning construction that returns underspecified DRSs.

#### Example



| ?x y                             | PREFIX geo: <pre> <http: <="" pre="" www.geobase.org=""></http:></pre> |
|----------------------------------|------------------------------------------------------------------------|
|                                  | SELECT ?x WHERE {                                                      |
| geo:state(x)                     | ?x rdf:type geo:state .                                                |
| geo:border(x, y)                 | ?x geo:borders ?y .                                                    |
| $y = \sigma \rho \cdot h a waii$ | ETL TEP (2) == goo · bauaii)                                           |

# OFFLINE GRAMMAR CREATION

#### **Ontology lexicon**



A **lemon** lexicon specifies linguistic realisations of ontology concepts, in particular word forms, morphological properties, subcategoriziation frames and how syntactic and semantic arguments correspond to each other.



#### Grammar generation

y = geo.navvan

#### FILIER((y==geo:nawall) .

#### Disambiguation

The mapping between natural language expressions and ontology concepts need not be one-to-one.

#### Examples:

biggest ~> max geo:area, max geo:population
to have ~> geo:inState, geo:flows\_through

**Pythia** resolves ambiguities by means of ontological reasoning, exploiting sortal restrictions in meaning representations.

Grammar entries consist of a syntactic representation (LTAG tree) and a semantic representation (extended UDRT).

#### Example:



Grammars consist of a domain-independent part (wh-words, determiners, auxiliary verbs, etc.) and a domain-specific part, which is automatically generated from an ontology lexicon.

#### Demo and more information: <a href="http://www.sc.cit-ec.uni-bielefeld.de/pythia">http://www.sc.cit-ec.uni-bielefeld.de/pythia</a>