

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukhareva Zahurul Islam

ntroductio

Languag Detection

Lexicon Expande

Conclusio

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukhareva and Zahurul Islam

Text Technology Group, Goethe-Universität Frankfurt am Main

Monday, 10 October 2011

Outline

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukhareva

Introduction

Language Detection

Lexicon Expander

- 1 Introduction
- 2 Language Detection
- 3 Lexicon Expander
- 4 Conclusion

Example: Modern Sentences

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

Introduction

Languag Detection

exicon Expande

Conclusion

- Wenn der Driver beim Link zum Host trappt, muss er mal geupdated werden.
- PHP peut également générer d'autres formats en rapport avec le Web, comme le WML, le SVG, le format PDF, ou encore des images bitmap telles que JPEG, GIF ou PNG.
- by Escoffier to become the modern version of haute cuisine; Gastro-tourism and the Guide Michelin helped to acquaint people with the rich bourgeois and peasant cuisine of the French countryside starting in the 20th century.

courtesy: Armin Hoenen

Example: Modern Sentences

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukhareva Zahurul Islam

Introduction

Languaç Detectio

Lexicon Expande

Conclusion

- Wenn der Driver beim Link zum Host trappt, muss er mal geupdated werden.
- PHP peut également générer d'autres formats en rapport avec le Web, comme le WML, le SVG, le format PDF, ou encore des images bitmap telles que JPEG, GIF ou PNG.
- by Escoffier to become the modern version of haute cuisine; Gastro-tourism and the Guide Michelin helped to acquaint people with the rich bourgeois and peasant cuisine of the French countryside starting in the 20th century.

courtesy: Armin Hoenen

Multilingualism in Modern Texts

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

Introduction

Detection

Lexicon Expander

- The number of multilingual resources available on the web are rising drastically
- Imposing new challenges to NLP researchers
- It is also a challenge for many NLP applications
- There are many language detection toolkits available for modern languages

Example: Ancient Sentences

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

Introduction

Detectio

Lexicon Expander

Conclusio

- Er uuas miteuuare, also Esaias chat Gaude et letare, Hierusalem, quia rex tuus uenit tibi mansuetus.
- et in anniuersario sancte thiedhilda to then neppenon ande to then almoson ande to themo inganga thero iungereno tue malt
- Tiû grûba uólliu uuazzeres bézeichenet, dáz ér chât Saluum me fac, deus

courtesy: Timothy Price

Example: Ancient Sentences

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukhareva Zahurul Islam

Introduction

Detection

Lexicon Expander

Conclusio

- Er uuas miteuuare, also Esaias chat Gaude et letare, Hierusalem, quia rex tuus uenit tibi mansuetus.
- et in anniuersario sancte thiedhilda to then neppenon ande to then almoson ande to themo inganga thero iungereno tue malt
- Tiû grûba uólliu uuazzeres bézeichenet, dáz ér chât Saluum me fac, deus

courtesy: Timothy Price

Multilingualism in Ancient Texts

A Three-step Model of Language Detection in Multilingual Ancient Texts

8/21

Maria Sukharev Zahurul Islam

Introduction

Language Detection

Lexicon Expander

Conclusion

Sources

- Loan words
- Comments in foreign languages

Patrologia Latina (Mehler et al. 2011)

- 700,000 foreign words (Sukhareva et al. 2011)
- Comments in French, English, German, etc.

Old High German (OHG)

■ 9% of words are Latin (Sukhareva et al. 2011)

Multilingualism in Ancient Texts

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

Introduction

Languag Detection

Lexicon Expander

Conclusion

Sources

- Loan words
- Comments in foreign languages

Patrologia Latina (Mehler et al. 2011)

- 700,000 foreign words (Sukhareva et al. 2011)
- Comments in French, English, German, etc.

Old High German (OHG)

■ 9% of words are Latin (Sukhareva et al. 2011)

Multilingualism in Ancient Texts

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

Introduction

Language Detection

Lexicon Expander

Conclusion

Sources

- Loan words
- Comments in foreign languages

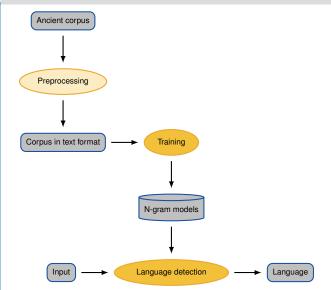
Patrologia Latina (Mehler et al. 2011)

- 700,000 foreign words (Sukhareva et al. 2011)
- Comments in French, English, German, etc.

Old High German (OHG)

■ 9% of words are Latin (Sukhareva et al. 2011)

Language Detection (LD) toolkit (Waltinger and Mehler 2009)


A Three-step Model of Language Detection in Multilingual Ancient Texts

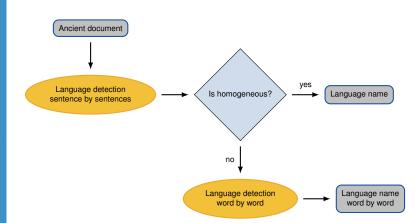
Maria Sukharev Zahurul Islam

ntroductio

Language Detection

Lexicon Expande

LD toolkit (Islam et al. 2011)


A Three-step Model of Language Detection in Multilingual Ancient Texts

10/21 Maria Sukhareva Zahurul Islam

Introduction

Language Detection

Lexicon Expande

Evaluation: Test set

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

ntroduct

Language Detection

Lexicon Expande

Language	Tokens	Sentences	Unknown
German-French	5893	315	460
English-Turkish	14022	724	438
OHG-Latin	1397	217	499

- English-Turkish test corpus is comprised of English Wikipedia articles (e.g. Atatürk, Istanbul etc.), which contain numerous Turkish words.
- German–French test corpus is comprised of German Wikipedia articles, which contain numerous French words.
- OHG-Latin corpus is comprised of OHG sentences, which contain Latin words.

LD toolkit: Evaluation

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

ntroductio

Language Detection

Lexicon Expande

Language	F-score	Accuracy
German-French	0.40	35.43%
English-Turkish	0.36	38.13%
OHG-Latin	0.79	70.34%

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

ntroductio

Language Detection

Lexicon Expander

- 1 An application module for the eHumanities Desktop
- Used to build and annotate lexica
- The LD Toolkit is integrated into it

System Architecture


A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

Introduction

Languag Detection

Lexicon Expander

- 1 A multilingual text is preprocessed
- 2 The Lexicon Expander extracts unknown words
- One of three options of language detection is applied
- The results are saved in a MySQL DB
- 5 The user can manually annotate the lexicon or apply morphological expansion

A Three-step Model of Language Detection in Multilingual Ancient Texts

15/21 Maria Sukhare

. . . .

Detection

Lexicon Expander

Conclusion

t Dictionary:	old_high_german	≥ Load	Dictionary 🤤 Do	wnload Create I	Dictionary		
Word Index							f Example >>
Filter by word:	Word ~		0,	Add Entry 🔘 Rem	ove Entry 🌦 Ex	pand Wordfc	Sentences
Wordform	Lemma	Language	PoS	AGFL-Lex	Frequency	Auti	Number of se
sint	sint	German	#ADJA		8	suk 🖪	117: in ze
iro	iro	German	#ADV		5	suk	ierusalem fone
unde	unde	Latin	#ADJA		5	suk	bethleem
dea	dea	German	#ADJD		4	suk	diù ze súnde ist
tres	tres	Latin	#ADJA		4	suk	also oúh
et	et	Latin	#EM		4	suk	
sin	sin	German	IVAFIN		3	suk	
person?	person?	Latin	#ADJA		3	suk	
ierusalem	ierusalem	German	#XY		3	suk	
s	s	Latin	#PPER		3	suk	
salmun	salmun	German	#ADJA		2	suk	
fona	fona	Latin	#VVFIN		2	suk	
ouh	ouh	Latin	#NN		2	suk	
substanti?	substanti?	Latin	#ADJA		2	suk	
spiritus	spiritus	Latin	#ADJA		2	suk	
creaturis	creaturis	Latin	NADJA		2	suk	
patrem	patrem	Latin	#FM		2	suk	
filium	filium	Latin	#VVFIN		2	suk	
pontio	portio	Latin	#ADJA		2	suk	
pilato	pliato	Latin	#ADJA		2	suk	
domini	domini	Latin	#ADJA		2	suk	
diu	diu	Latin	#ADJD		2	suk	

Figure: The GUI of the Lexicon Expander

- The F-score and accuracy are low if the LD Toolkit input is single words
- The Lexicon Expander post-processes the LD Toolkit output, improving the f-score and accuracy
- The Lexicon Expander relies on the language sentences, in which the target word occurs and on the co-occurring unknown words

A Three-step Model of Language Detection in Multilingual Ancient Texts

16/21 Maria Sukhareva Zahurul Islam

Introduction

Detection Detection

Lexicon Expander

Conclusion

```
 S(w) = \{ s \in S \mid w \in f(s) \}
```

- 1 $L: W \rightarrow \{l_1, \ldots, l_m\} = \mathbb{L}$
- 2 $L_1(w) = \arg \max_{l \in \mathbb{L}} \{ |\{ w' \in W' \mid \exists s \in S(w) : w' \in f(s) \land L_1(w') = l \} | \} \}$
- 3 $L_2(w) = \arg\max_{l \in \mathbb{L}} \{ |\{ s \in S(w) \mid L_1(s) = l \} | \}$

Figure: Lexicon Expander Language Assignment
Algorithm

A Three-step Model of Language Detection in Multilingual Ancient Texts

16/21 Maria Sukhareva Zahurul Islam

Introduction

Detection Detection

Lexicon Expander

Conclusion

```
 S(w) = \{ s \in S \mid w \in f(s) \}
```

- 1 $L: W \rightarrow \{l_1, \ldots, l_m\} = \mathbb{L}$
- 2 $L_1(w) = \arg\max_{l \in \mathbb{L}} \{ |\{ w' \in W' \mid \exists s \in S(w) : w' \in f(s) \land L_1(w') = l \} | \}$
- 3 $L_2(w) = \arg\max_{l \in \mathbb{L}} \{ |\{s \in S(w) \mid L_1(s) = l\} \}$

```
 \begin{aligned} \mathbf{Data} &: \text{ The set of unknown words } W' = \{w_1, \dots, w_n\} \\ \mathbf{Result} &: \text{ The language } \mathcal{L}(w) \text{ of any word } w_i \in W' \\ \text{ for } i = 1..n \text{ do} \\ & L_{\mathbb{S}}(w_i) \leftarrow \{l \in \mathbb{L} \, | \, \exists s \in S(w_i) : l = L_1(s)\}; \\ & \text{ if } |L_{\mathbb{S}}(w_i)| = 1 \text{ then} \\ & | \mathcal{L}(w) \leftarrow L_1(w_i); \\ & \text{ end} \\ & \text{ else} \\ & | \mathcal{L}(w) \leftarrow L_2(w_i); \\ & \text{ end} \end{aligned}
```

Figure: Lexicon Expander Language Assignment
Algorithm

A Three-step Model of Language Detection in Multilingual Ancient Texts

16/21 Maria Sukhareva Zahurul Islam

Introduction

Detection

Lexicon Expander

Conclusion

```
 S(w) = \{ s \in S \mid w \in f(s) \}
```

- 1 $L: W \to \{l_1, \ldots, l_m\} = \mathbb{L}$
- 2 $L_1(w) = \arg\max_{l \in \mathbb{L}} \{ |\{ w' \in W' \mid \exists s \in S(w) : w' \in f(s) \land L_1(w') = l \} | \}$
- 3 $L_2(w) = \arg \max_{l \in \mathbb{L}} \{ |\{s \in S(w) \mid L_1(s) = l\} | \}$

Figure: Lexicon Expander Language Assignment
Algorithm

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

Introduction

Detection

Lexicon Expander

Conclusion

```
 S(w) = \{ s \in S \mid w \in f(s) \}
```

- 1 $L: W \rightarrow \{l_1, \ldots, l_m\} = \mathbb{L}$
- 2 $L_1(w) = \arg\max_{l \in \mathbb{L}} \{ |\{ w' \in W' \mid \exists s \in S(w) : w' \in f(s) \land L_1(w') = l\} | \}$
- 3 $L_2(w) = \arg \max_{l \in \mathbb{L}} \{ |\{ s \in S(w) \mid L_1(s) = l \} | \}$

```
 \begin{aligned} \mathbf{Data} &: \text{ The set of unknown words } W' = \{w_1, \dots, w_n\} \\ \mathbf{Result} &: \text{ The language } \mathcal{L}(w) \text{ of any word } w_i \in W' \\ \text{ for } i &= 1..n \text{ do} \\ & \quad L_{\mathbb{S}}(w_i) \leftarrow \{l \in \mathbb{L} \mid \exists s \in S(w_i) : l = L_1(s)\}; \\ & \quad \text{ if } |L_{\mathbb{S}}(w_i)| = 1 \text{ then} \\ & \quad | \quad \mathcal{L}(w) \leftarrow L_1(w_i); \\ & \quad \text{ end} \\ & \quad \text{ else } \\ & \quad | \quad \mathcal{L}(w) \leftarrow L_2(w_i); \\ & \quad \text{ end} \end{aligned}
```

Figure: Lexicon Expander Language Assignment Algorithm

Evaluation: Results

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

Introducti

Detection

Lexicon Expander

Conclusion

Language	F-Score	Accuracy
German - French	0.40	35.43%
English - Turkish	0.36	38.13%
OHG - Latin	0.79	70.34%

Table: Performance of the LD Toolkit: word level

Language	F-Score	Accuracy
German - French	0.58	53.5%
English - Turkish	0.52	51%
OHG - Latin	0.95	91.78%

Table: Performance of the Lexicon Expander

Conclusion

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

ntroduction

Languag Detection

Lexicon Expande

- Multilingualism in ancient corpora causes problems for lexicon building
- The Lexicon Expander post-processes the LD Toolkit output and improves f-score and accuracy scores
- This safes annotators efforts and simplifies automatic processing

Reference

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

ntroductio

Detection

Lexicon Expander

Conclusion

Sukhareva et al. 2011: Sukhareva, Maria; Islam, Zahurul; Hoenen, Armin; Mehler, Alexander; A

Three-step Model of Language Detection in Multilingual Ancient Texts, In

preparation, 2011;

Mehler et al. 2011: Alexander Mehler, Nils Diewald, Ulli Waltinger, Rüdiger Gleim, Dietmar Esch, Barbara Job, Thomasu Küchelmann, Olga Pustylnikov, and Philippe Blan-u chard.

Evolution of Romance language in written communication: Network analysis of late Latin and early Romance corpora. Leonardo, 44(3), 2011.

iate Latin and early Homanice corpora. Leonardo, 44(3), 2011.

Islam et al. 2011: Islam, Md. Zahurul; Mittmann, Roland und Mehler, Alexander; Multilingualism in Ancient Texts: Language Detection by Example of Old High German and Old Saxon, In GSCL conference on Multilingual Resources and Multilingual

Applications (GSCL 2011), 28-30 September, Hamburg, Germany, 2011.

Waltinger and Mehler 2009: Ulli Waltinger and Alexander Mehler, The feature difference coefficient:

Classification by means of feature distributions, In Proceedings of the Conference

on Text Mining Services , Leipziger Beiträge zur Informatik: Band XIV, pages

159-168. Leipzig University, Leipzig.

Acknowledgement

A Three-step Model of Language Detection in Multilingual Ancient Texts

Maria Sukharev Zahurul Islam

introducti

Languag Detection

Lexicon Expande

Conclusion

This work is funded by LOEWE Digital- Humanities project in the Goethe-Universität, Frankfurt.

Goethe-Universität Frankfurt | Technische Universität Darmstadt | Freies Deutsches Hochstift

A Three-step Model of Language Detection in Multilingual Ancient Texts

21/21 Maria Sukhareva Zahurul Islam

ntroductio

Language Detection

Lexicon Expande

Conclusion

Thank you!